The Truth is Out There: Reflections on Search in
Software Engineering

Christopher L. Simons

Department of Computer Science and Creative Technologies, University of the West of
England, Bristol, BS16 1QY, United Kingdom

Abstract

In the popular science fiction horror drama TV series “The X-Files”, two FBI
agents (Mulder and Skully) investigate unsolved case files relating to emerging
paranormal phenomena and possible alien life. Many explanations and conspir-
acy theories abound. Although the intrepid investigators struggle to put the
disparate pieces together, they believe that “the truth is out there”.

Search-based software engineering has attracted much research attention re-
cently and many theories also abound relating to the application of metaheuris-
tic search techniques to software engineering problems. Some 15 years since the
term ‘search-based software engineering’ was suggested, it is perhaps timely to
reflect on some of these emerging phenomena in the field of search-based soft-
ware engineering and examine some of the theories, fallacies and facts in a wider
software engineering context. Is there truth out there?

This presentation suggests some possible fallacies of search with respect to
software engineering, before reviewing some more established facts about the
progress of search-based software engineering, 15 years on. The application
of search-based software engineering techniques within different phases of the
software engineering life cycle is discussed, with a particular emphasis on agile
development methodologies. Finally, attempts are made to put the disparate
pieces together to speculate on areas of future industrial adoption of search-
based software engineering.

1. Introduction

In the popular science fiction horror drama TV series “The X-Files”, two FBI
agents (Mulder and Skully) investigate unsolved case files relating to emerging
paranormal phenomena and possible alien life. Many explanations and con-
spiracy theories abound in an attempt to explain these phenomena. Although
the intrepid investigators struggle to put the disparate pieces together, they
resolutely believe that “the truth is out there”.

Email address: chris.simons@uwe.ac.uk (Christopher L. Simons)

Preprint submitted to First Spanish Summer School On SBSE June 27, 2016

Search-Based Software Engineering (SBSE) has attracted much research at-
tention recently and many theories also abound relating to the application of
metaheuristic search techniques to software engineering problems. Some 15
years since the term search-based software engineering was suggested [I], it is
seems appropriate to reflect on some of the emerging phenomena in the field of
search-based software engineering, and examine some of the theories, fallacies
and facts in a wider software engineering context. Is the truth out there?

2. Some Ideas Out There - Possible Fallacies?

While many ideas have been suggested to explain phenomena in various
aspects of software engineering, there are some that deserve close scrutiny be-
cause of their particular resonance to the application of metaheuristic search.
For example, Glass [2] examines the idea that “you can’t manage what you can’t
measure”. A derivation of “you can’t control what you can’t measure” originally
proposed in 1986 by De Marco [3], this idea is based on the reasonable premise
that managing software development in the presence of data is generally more
effective than managing in its absence. However, some aspects of software en-
gineering are more effectively managed qualitatively rather than quantitatively,
and De Marco has more recently revised his thoughts [4] to focus on the delivery
of software based on business ‘value’ - something difficult to measure and highly
qualitative. Thus Glass asserts the original idea is a fallacy [2]. If so, this fal-
lacy resonates on the performance of metaheuristic search which is attempting
to optimize solutions based on (mostly) quantitative measurements as objective
fitness functions.

Phenomena have been observed in agile software development methodolo-
gies. A full discussion of agile development methodologies is beyond the scope of
this paper, yet such is the significance of their contribution to the field and pre-
dominance in contemporary software development practice, the existence some
agile ideas put forward also merit scrutiny. For example, in a rigorous and
colourful critical appraisal, Meyer [5] suggests there are ‘bad and ugly’ ideas
in agile approaches. He cites the deprecation of upfront tasks in agile such as
requirements engineering, architecture and design, and feature based develop-
ment among others as ideas whose truth is problematic in reality. Moreover, the
question “is design dead?” within an agile context has also been discussed [6],
and not fully resolved. It seems likely that the full truth in areas such as upfront
requirements, architecture and design is more subtle, and Meyer speculates on
the influence of increasing software system scale as a causative factor in these
areas. However, the resonance of these ‘bad and ugly’ agile ideas within search
perhaps seems to be quite appropriate, as much research attention has been paid
to these aspects of software development (e.g. see [7], [8] and [9] respectively).

A number of phenomena relating to search within software engineering have
also been observed. For example, perhaps reflecting that search originally
emerged mainly as an optimization technique, quantitative software metrics
have been reported as good candidates for objective fitness functions [I0]. In
constrained optimization problem domains, e.g. the search-based optimization

of test case suites for branch coverage, the fitness measure is typically immedi-
ately apparent. However, a number of software engineering texts have emerged
discussing the limitations of metrics generally in software engineering. For ex-
ample, Fenton and Bieman [I] raise questions concerning what metrics actually
represent with regard to what exactly is being measured, and “how to make mea-
surable what is not measurable”. Moreover, Cinneide et al. [I2] recently report
that considerable disagreement is found in search trajectories using differing
cohesion metrics that claim to measure the same concept (i.e. class cohesion),
when used in search over the same problem domain. The results obtained cast
doubt on the ability of various cohesion metrics to act as universal objective
fitness functions in search. In a separate empirical study, Simons et al. [13]
captured software engineers’ qualitative evaluation of various design qualities
over a range of software designs, and compared them with quantitative metric
values where such metrics aim to reflect similar qualities. Little or no correlation
between the two was found. It seems possible that the idea of software metrics
as fitness functions in search could be fallacious under certain circumstances -
for example, when many concerns are being measured simultaneously, or when
qualitative evaluation is a concern.

While it is widely understood that representation should be appropriate for
the problem domain (e.g. see [I4]), the notion that the representation is compre-
hensive is likely to be a fallacy. It is more typical for a solution representation
to enable search components (such as fitness evaluation and diversity opera-
tors) for reasonable execution performance rather than model all aspects of the
problem being investigated. As Meigan et al. [I5] point out, there are limita-
tions with the representation model in that a solution individual may be “an
approximation of complex problem’s aspects” and a “simplification for model
tractability”.

Although not fallacies, other ideas have emerged whose complete semantic
may have been somewhat truncated over the course of time. For example,
in support of decision making in software engineering, many multi-objective
evolutionary algorithms have been applied (e.g. see [16], [I7]). While such
algorithms undoubtedly make a significant contribution, Deb [I8] points out
that from a practical standpoint, there are two steps involved in an ideal multi-
objective optimization procedure:

1. “Find multiple trade-off optimal solutions with a wide range of values for
objectives”, and

2. “Choose one of the obtained solutions using higher-level information, re-
quiring various subjective and problem-dependent considerations”.

While considerable research attention has been directed to the first step, it
seems likely that less has been aimed at the second. In a population-based
multi-objective search, it is typical to employ population sizes of hundreds of
solution individuals. Sources investigating the choice of one of the obtained
solutions from a search population based on higher-level information are less
readily available in the research literature.

3. Some Facts, or What We Do Know

A large number of ideas capturing what we do know about software engi-
neering have been put forward. However, it is interesting to focus on some that
at first glance might not seem obviously pertinent to search, but upon reflection,
acquire relevance. For example, according to Glass [2], the following two facts
about software engineering relate to software engineers:

o “The most important factor in software work is not the tools and tech-
niques used by the programmers, but rather the quality of the programmers
themselves”, and

o “The best programmers are up to 28 times better than the worst program-
mers.”

Interestingly, Glass quotes some software engineering folklore to support these
facts (e.g. Sackman, 1968, [19], and Boehm, 1975, [20]). In addition however,
more recent research in 2014 into measuring development and programming
skills [21], also reports a significant range of skills to be found in practicing
software engineers. In agile methodologies, the importance of software engineers
in software development is also emphasised. As the agile manifesto [22] states,
its authors have come to value “individuals and interactions over processes and
tools”. Given this understanding of the fact, it is interesting to speculate on the
role of the software engineer in SBSE [23].

Given this lack of emphasis on processes and tools, where might this leave
ideas about the development tools use by software engineers? At first glance,
perhaps surprisingly, Glass [2] presents as fact:

o “Software developers talk a lot about tools, but seldom use them”.

In discussing this idea, Glass goes further to assert that developers talk a lot
about tools, evaluate some, but use few. Glass speculates that this might be
due, at least in part, to an occurrence of the “not-invented-here” phenonemon,
although pressing delivery timescales may also have a role to play in not allowing
software engineers the time to thoroughly research and evaluate new tools that
might enhance productivity. Particularly with semi-autonomous tools such as
decision-support or recommender systems, lack of engineer trust can be a barrier
to tool adoption, as pointed out in [I5], for example. Regarding trust in software
tools, valuable lessons can be drawn from the field of multi-agent systems. For
instance, Klien at al. [24] report a number of challenges for making automation a
“team player” in any joint human-agent activity. Clearly, the software engineer
and the tool must use common ground to work jointly to agreed goals, but other
factors are important too. For example, “To be a team player, an intelligent
agent — like a human — must be reasonably predictable and reasonably able to
predict others actions”, while at the same time “agents must be able to observe
and interpret pertinent signals of status and intentions.” Given the significant
range in software engineer competencies discussed above, successfully achieving
trust in search-based software tool support is clearly non-trivial.

Given the above phenomena of software engineering, it is perhaps not sur-
prising that there appears to be a gap between SBSE tool innovation and prac-
titioner adoption. In a recent article [25], Gregory et al. report the results of
an empirical survey into the challenges that practicing software engineers face
in an agile context, and consistent with the human-centred ‘facts’ presented on
software engineers above, discover that organizational, cultural and team-based
challenges predominate, although the challenges of scale and complexity also
emerge. Interestingly, Freudenburg and Sharp suggest a 'top ten’ of burning
research questions from practitioners [26]. Little consistency is found between
this top ten’ and the wider SBSE research literature. Top research questions
from practitioners relate (in order of numbers of publications) to large scale
projects, self-organisation and team co-location.

To go some way to explain this gap, it seems possible that there could be
a historical lack of emphasis on empirical research in SBSE. The SBSE liter-
ature has not always reported empirical studies in abundance, although it is
interesting to note that the past five years have seen an small upsurge in some
interesting empirically-based research publications. A few notable examples in-
clude Hemmati et al. [27] who conducted an industrial case study into enhanced
test case selection approach for model-based testing. Amannejad et al. [28] con-
ducted an industrial case study to investigate what parts of a software system
should be tested in an automated fashion and what parts should remain manual,
and suggest that focus should be on return on investment (ROI). Wang et al.
[29] also used an industrial case study, but used industrial data to formulate a
novel fitness measure for test case prioritisation in a multi-objective approach
to product line testing. Simons et al. [30] employed the services of software de-
signers to interact with an Ant Colony Optimization search of software designs
using both quantitative metrics for design coupling and the designers’ qualita-
tive evaluation of design elegance. Marculescu et al. [31] conducted an initial
industrial evaluation of interactive search-based testing for embedded software
using problem-domain experts who had little or no knowledge of SBSE. Recently,
Araaujo et al. [32] propose an architecture based on interactive optimization
and machine learning for application to the next release problem, derived from
not only implicit, tacit preferences of the decision maker, but also quantitative
measures of release dependencies.

It is also interesting to focus on some facts concerning what we know about
search that might have resonance to software engineering. Firstly, it is well
known that both effectiveness and efficiency are important in the performance
of search. However, while fitness values and/or attainment surfaces for Pareto-
fronts are typically reported, execution time has not always been reported in
results of many papers in the SBSE literature. Algorithm performance with
respect to parameter tuning has been investigated (e.g. [33], [34], [35]) as has
parallel execution (e.g. [36]). Langdon and Harman report a considerable ex-
ecution performance gain in one case study using genetic programming [37].
Nevertheless, performance times may not always be a significant part of the
contribution of some papers, although if an empirical study or case study is
described, performance times can be crucial.

It is also evident that the provision of additional benchmark problem in-
stances would assist more rigorous comparison of various metaheuristic search
approaches. Some issues relating to software engineering repositories are dis-
cussed by Rodriguez et al. [38].

Given that an important factor is the quality of software engineering is hu-
man - the developers and programmers - the role of human interactivity in search
has been discussed previously (e.g. see [23]). Interactive search extends the role
of search from solely optimization to the generation of insight and knowledge
discovery within the problem instance being searched [39]. In such interactive
search, it is typical to combine quantitative fitness determined by software met-
rics with qualitative developer evaluation (e.g. [9]) to obtain a rich assessment
of solution fitness.

4. Search in (Agile) Practice

In this section, we look at various practices within the software engineering,
and examine the phenomena associated with current search application. We also
speculate on ways in which search might show potential. However, rather than
taking a classical waterfall view of the life cycle (e.g. requirements, design, code,
test), agile practices are examined because of their wide adoption and acceptance
in the software engineering community (e.g. see [40], [41]). Considering what
constitutes a practice in software development, Meyer [5] suggests: “A practice
has to be an activity or mode of working, but with a special twist: repeated
application. In the absence of repetition, we may have an interesting technique,
but it is not a practice unless it is performed regularly (in the case of an activity)
or enforced systematically (in the case of a mode of working)”.

Drawing upon this assertion and other sources on the agile community [42],
[43], [44], the following subsections examine engineering and development prac-
tices (in no particular order) with respect to ways in which search has been
applied. Also, where appropriate, we speculate on novel ways in which search
might be applied. Agile practices examined include iteration planning, the retro-
spective, collective code ownership, continuous integration, pair programming,
refactoring and test-first programming.

(Some development practices such as modes of working have not considered
in this paper because they focus exclusively on engineer behavior and organi-
sation, e.g. physical co-location of the engineering team, ready access to client
stakeholders, informative workspaces etc. For such modes of working, many
communication focused tools are available to assist with the manual organisa-
tion of planning, tracking progress and release of software; e.g. see [45]).

4.1. Iteration (Sprint) Planning

The planning of a delivery iteration, or ‘Sprint’ [42], involves examining the
product backlog to produce a backlog of tasks appropriate for delivery at the
end of an iteration. The product backlog is a prioritized queue of features and
technical capability required of the software product-to-be, whereas the sprint

backlog is a subset of the product backlog chosen for deployment and delivery
at the end of the sprint.

As part of iteration planning, estimating task duration can be addressed
by the ‘Planning Game’ [43], or ‘Planning Poker’ [42]. The Planning Game
is a cooperative game wherein business stakeholders define task priority and
developers estimate task duration. ‘User stories’ are typically used to describe
feature tasks; metrics such as the ‘story point’ [46] have been proposed to mea-
sure story size. Planning Poker involves participants picking duration estimates
from preset values, with each participant revealing their estimate in turn.

In the SBSE arena, iteration planning has been addressed in terms of ‘Soft-
ware Release Planning’, and has attracted much research attention recently. For
example, Aguila et al. [47] integrate multi-objective search components into a
requirements management tool as part of a three stage process to assist the
human planner. Del Sagrado et al. [48] report promising results for ant colony
approach to optimize requirements selection. Pitangueira et al. [49] incorpo-
rate an assessment of cost, value and risk to reduce stakeholder dissatisfaction in
multi-objective requirement selection. Araijo et al. [32] propose an architecture
for interactive optimisation combined with machine learning for requirements
planning and report promising outcomes in an empirical investigation. A useful
survey of the area published in 2015 can be found at [7].

The attention devoted to iteration planning using search seems relevant and
useful to this agile practice, and recent work using search-based decision support
is encouraging. However, research appears to be inspired principally by quan-
titative optimization rather than by a game-based approach, or for instance,
‘Planning Poker’. It is interesting to speculate on ways in which interactive
metahueristic search could assist with game-based approaches, e.g. poker, par-
ticularly when combined with other forms of machine learning.

4.2. Retrospective

A sprint retrospective is a practice to review successful (and less successful)
development aspects at the completion of the sprint. According to Meyer [5],
“the purpose is what we find at level 5, ‘optimizing’ of the CMMI: integrating
into the process a feedback loop so that it can improve itself”. The CMMI, or
Capability Maturity Model Integration, describes five levels of process maturity
from level 1, ‘initial’, to level 5, ‘optimizing’ [50].

In the SBSE arena, references to search-based optimization of sprint activi-
ties in a retrospective are not readily available in the literature. At first glance,
this is perhaps surprising given that a primary focus of search is optimization.
In an attempt to explain this, we firstly note that given the people-centred,
documentation lightweight nature of agile processes, meta-modelling of agile
processes is not immediately apparent in the literature. In other development
methodologies, however, models of the development process have been proposed
and widely adopted e.g. CMMI [50] and the International Standards Organisa-
tion process assessment approach Software Process Improvement Capability De-
termination (SPICE) [51]. In the arena of service-oriented architectures (SOA),

a useful survey of service-based development process models is offered by Lane
and Richardson [52].

It is fascinating to speculate on ways in which search might be applied to
optimising agile processes as part of the sprint retrospective. Solution represen-
tation as a model of the development process presents challenges but building
on CMMI and ISO 15504 might offer a starting point. Formulating quantitative
and qualitative fitness measures relating to sprint velocity and achievement seem
conceivable. Perhaps an interactive search approach could provide feedback, in-
sight and discovery for adaptive agile development process improvement?

4.3. Collective Code Ownership

Although the phenomenon of collective code ownership has existed for many
years, a number of authors advocate the practice of shared code ownership
within an agile context (e.g. [43], [44]). These advocates point to shared code
ownership as assisting other practices such as continuous integration and pair
programming. However, others [63] point out that other models can exist e.g.
single person ownership of designated source code. Whatever model is followed,
the role of coding standards is crucial in this practice [54].

In the SBSE arena, references to collective code ownership are not imme-
diately apparent. It seems possible that this agile phenomenon is closer to a
mode of working rather than a practice, although the role of coding standards
has implications for refactoring - this is discussed below.

4.4. Continuous Integration

Integrating the various components of a software system involves compila-
tion, deployment and running of tests against the various changes to the code
base made by team members. The larger the number of code changes, the
greater potential difficulty of the compilation, build and deployment. Propo-
nents of this agile practice (e.g. [43]) point out that regular and continuous
integration builds can be difficult to achieve, but are highly beneficial in pro-
viding instant feedback on the status of system compilation and build.

In the SBSE arena, references to continuous integration are also not imme-
diately apparent, although Harman ventures the opinion that the deployment
process might be dynamically optimised [39]. However, it is interesting to fur-
ther speculate if search-based approaches could assist in resolving difficult cases
of build integration based on the dependencies resulting from numerous changes.

4.5. Pair Programming

[4

Pair programming involves placing “..two people sitting at one machine’
while programming [5]. While Beck [43] suggests that all production programs
are developed in this manner, others [44], [42] suggest that pair programming
is best practiced in periods of intense communication between programmers,
perhaps when debugging an elusive error, interpreting a complex requirement
or evaluating a design trade-off judgement.

In the SBSE arena, references to pair programming are also not immediately
apparent. However, it is interesting to observe that attempts have been made
use coevolution to assist in the automation of software correction (by coeolving
tests with program code) [55]. It is interesting to speculate if a coevolutionary
approach could be harnessed interactively for the practice of pair programming.

It is also most interesting to speculate on the ways in which genetic im-
provement (e.g. [66]) might be applied interactively for pair programming. In
an interesting rethink of genetic improvement programming, White and Singer
[57] argue for new ways forward for genetic improvement programming includ-
ing “program transformation, translation, cloning; code scavenging and recom-
bination”, which seem attractive possibilities for interactive application to pair
programming.

4.6. Refactoring

The phenomenon of refactoring was first proposed some 25 years ago [58]
and has been subsequently adopted as an agile practice. According to Fowler
[59], “Refactoring is the process of changing a software system in such a way
that is does not alter the external behaviour of the code, yet improves its internal
structure”. Recent work has questioned that assertion however, suggesting that
minor changes in semantic code behaviour may be tolerated for the sake of
improved software quality. Moreover, Hafiz and Overby [60] suggest that it is a
myth that manual refactoring tools are robust; rather they can unintentionally
introduce semantic code changes and errors in the pursuit of improved code
quality.

In the SBSE arena, refactoring has attracted significant attention. For exam-
ple, Mkaouer et al. exploit high dimensional search to find trade-offs among up
to 15 objectives in (semi-)automatic refactoring [I7]. Amal et al. use machine
learning and search-based software engineering to cope with ill-defined fitness
functions [61]. In a further example, Simons and Smith use both pheromone
and anti-pheromone in an ant colony optimization approach to software design
refactoring [62]. In this approach, antipheromone is used to steer search away
from poor solutions, which pheromone steers search towards superior solutions.

Although examples are not abundant in the literature, it is interesting to
speculate how coding standards and collective code ownership might be ex-
ploited in search-based refactoring. One interesting proposal by Langdon [63)
suggests applying an interactive genetic alogrithm to find good C source code
layouts using GNU Indent. Given that coding standards and shared code owner-
ship can facilitate continuous integration and refactoring, contributions of SBSE
in this area would be most welcome.

4.7. Test-First Programming

In this practice, Beck [43] advises us to “write a failing test before changing
any code”, thus emphasising the importance of evaluation in the development
of software. After the test fails, development consists of fixing the failed test
and refactoring where necessary. However, test-first programming has been

criticised by Meyer [5] who points out that a test is one (important) part of a
requirement; other requirements (perhaps expressed as ’user stories’) have an
important contribution to development too.

In the SBSE arena, Harman points out that generating test data is a de-
manding, and that “.. techniques to automate test data generation must cater
for a bewildering variety of functional and non-functional test adequacy criteria
and must either implicitly or explicitly solve problems involving state propaga-
tion and constraint satisfaction” [64]. Harman then goes on to explain how
SBSE might assist in this situation. However, more recently, others have ques-
tioned the ways in which automatic test generation helps programmers. For
example, to investigate this issue, Fraser et al. [65] performed two controlled
experiments comparing 97 subjects split between writing tests manually and
writing tests with the aid of an automated unit test generation tool. While
tool support led to a improvement in aspects such a code coverage, Fraser et al.
report no measurable improvement in the number of bugs found be developers.
Interestingly, it appears that for the engineers writing tests with the aid of the
generator, there is a learning curve to be mounted in understanding the tests
generated, and this might be followed by possibly discarding some poor quality
generate tests. Also, high branch coverage may not necessarily lead to increased
fault detection. Fraser et al. also suggest that the interaction during manual
and automatic test generation is key to effectiveness - which is consistent with
many of the interactive phenomena observed above in the previous section.

5. Concluding Reflections

What might our fictional FBI agents (Mulder and Skully) make of the ideas
and theories abounding in search-based software engineering? It seems likely
that our investigators might be very impressed with the wide range of search
ideas and algorithms proposed for application in software engineering. But
perhaps they might also be a little surprised at the gap between such innovative
ideas and tool adoption in practice. It’s also possible that they might also hope
that as a sign of a maturing field, this gap may begin to close.

References

[1] M. Harman, B. F. Jones, Search-based software engineering, Information
and software Technology 43 (14) (2001) 833-839.

[2] R. L. Glass, Facts and fallacies of software engineering, Addison-Wesley
Professional, 2002.

[3] T. DeMarco, Controlling software projects: Management, measurement,
and estimates, Prentice Hall PTR, 1986.

[4] T. DeMarco, Software engineering: an idea whose time has come and gone?,
IEEE Software 26 (4) (2009) 96.

10

[5]

[16]

[17]

B. Meyer, Agile! the good, the hype and the ugly, Springer Science &
Business Media, 2014.

M. Fowler, Is design dead?, Software Development (San Francisco 9 (4)
(2001) 42-47.

A. M. Pitangueira, R. S. P. Maciel, M. Barros, Software requirements se-
lection and prioritization using sbse approaches: A systematic review and
mapping of the literature, Journal of Systems and Software 103 (2015)
267-280.

A. Ramirez, J. R. Romero, S. Ventura, An approach for the evolutionary
discovery of software architectures, Information Sciences 305 (2015) 234—
255.

C. L. Simons, I. C. Parmee, Elegant object-oriented software design via in-
teractive, evolutionary computation, Systems, Man, and Cybernetics, Part
C: Applications and Reviews, IEEE Transactions on 42 (6) (2012) 1797—
1805.

M. Harman, J. Clark, Metrics are fitness functions too, in: Software Met-
rics, 2004. Proceedings. 10th International Symposium on, IEEE, 2004, pp.
58-69.

N. Fenton, J. Bieman, Software metrics: a rigorous and practical approach,
CRC Press, 2014.

M. O. Cinnéide, I. H. Moghadam, M. Harman, S. Counsell, L. Tratt, An ex-
perimental search-based approach to cohesion metric evaluation, Empirical
Software Engineering (2016) 1-38.

C. Simons, J. Singer, D. White, Software refactoring: Metrics are not
enough, in: Proceedings of the 7th International Symposium on Search-
Based Software Engineering (SSBSE 2015), Lecture Notes in Computer
Science (LNCS) 9275, Springer, 2015, pp. 47-61.

Z. Michalewicz, Genetic algorithms+ data structures= evolution programs,
Springer Science & Business Media, 2013.

D. Meignan, S. Knust, J.-M. Frayret, G. Pesant, N. Gaud, A review and
taxonomy of interactive optimization methods in operations research, ACM
Transactions on Interactive Intelligent Systems (TiiS) 5 (3) (2015) 17.

K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiob-
jective genetic algorithm: NSGA-II, IEEE Transactions on Evolutionary
Computation 6 (2) (2002) 182-197.

M. W. Mkaouer, M. Kessentini, S. Bechikh, K. Deb, M. O Cinnéide, High
dimensional search-based software engineering: finding tradeoffs among 15

11

[18]

[19]

[29]

objectives for automating software refactoring using NSGA-III, in: Pro-
ceedings of the 2014 conference on Genetic and evolutionary computation
(GECCO 2014), ACM, 2014, pp. 1263-1270.

K. Deb, Multi-objective optimization using evolutionary algorithms,
Vol. 16, John Wiley & Sons, 2001.

H. Sackman, W. J. Erikson, E. E. Grant, Exploratory experimental studies
comparing online and offline programming performance, Communications
of the ACM 11 (1) (1968) 3-11.

B. W. Boehm, The high cost of software, Practical Strategies for Developing
Large Software Systems (1975) 3-15.

G. R. Bergersen, D. I. Sjoberg, T. Dyba, Construction and validation of an
instrument for measuring programming skill, IEEE Transactions on Soft-
ware Engineering 40 (12) (2014) 1163-1184.

Manifesto for agile software development, accessed 15 June 2016.
URL http://www.agilemanifesto.org

C. L. Simons, Whither (away) software engineers in SBSE?, in: 1st In-
ternational Workshop on Combining Modelling and Search-Based Software
Engineering (CMSBSE), IEEE, 2013, pp. 49-50.

G. Klein, D. D. Woods, J. M. Bradshaw, R. R. Hoffman, P. J. Feltovich, Ten
challenges for making automation a team player, IEEE Intelligent Systems
19 (6) (2004) 91-95.

P. Gregory, L. Barroca, H. Sharp, A. Deshpande, K. Taylor, The challenges
that challenge: Engaging with agile practitioners concerns, Information and
Software Technology.

S. Freudenberg, H. Sharp, The top 10 burning research questions from
practitioners, IEEE Software 27 (5) (2010) 8-9.

H. Hemmati, L. Briand, A. Arcuri, S. Ali, An enhanced test case selection
approach for model-based testing: an industrial case study, in: Proceedings
of the eighteenth ACM SIGSOFT international symposium on Foundations
of software engineering, ACM, 2010, pp. 267—-276.

Y. Amannejad, V. Garousi, R. Irving, Z. Sahaf, A search-based approach
for cost-effective software test automation decision support and an indus-
trial case study, in: Software Testing, Verification and Validation Work-
shops (ICSTW), 2014 IEEE Seventh International Conference on, IEEE,
2014, pp. 302-311.

S. Wang, D. Buchmann, S. Ali, A. Gotlieb, D. Pradhan, M. Liaaen, Multi-
objective test prioritization in software product line testing: an industrial
case study, in: Proceedings of the 18th International Software Product Line
Conference-Volume 1, ACM, 2014, pp. 32-41.

12

http://www.agilemanifesto.org
http://www.agilemanifesto.org

[30]

[31]

32]

[33]

[37]

C. L. Simons, J. Smith, P. White, Interactive ant colony optimization (iaco)
for early lifecycle software design, Swarm Intelligence 8 (2) (2014) 139-157.

B. Marculescu, R. Feldt, R. Torkar, S. Poulding, An initial industrial eval-
uation of interactive search-based testing for embedded software, Applied
Soft Computing 29 (2015) 26-39.

A. A. Aratjjo, M. Paixao, I. Yeltsin, A. Dantas, J. Souza, An architecture
based on interactive optimization and machine learning applied to the next
release problem, Automated Software Engineering (2016) 1-49.

C. L. Simons, I. C. Parmee, Dynamic parameter control of interactive local
search in UML software design, in: Systems Man and Cybernetics (SMC),
2010 IEEE International Conference on, IEEE, 2010, pp. 3397-3404.

A. Arcuri, G. Fraser, On parameter tuning in search based software engi-
neering, in: International Symposium on Search Based Software Engineer-
ing, Springer, 2011, pp. 33-47.

F. Wu, W. Weimer, M. Harman, Y. Jia, J. Krinke, Deep parameter opti-
misation, in: Proceedings of the 2015 Annual Conference on Genetic and
Evolutionary Computation, ACM, 2015, pp. 1375-1382.

S. Yoo, M. Harman, S. Ur, GPGPU test suite minimisation: search based
software engineering performance improvement using graphics cards, Em-
pirical Software Engineering 18 (3) (2013) 550-593.

W. B. Langdon, M. Harman, Optimising existing software with genetic pro-
gramming, IEEE Transactions on Evolutionary Computation 19 (1) (2015)
118-135.

D. Rodriguez, 1. Herraiz, R. Harrison, On software engineering repositories
and their open problems, in: Proceedings of the First International Work-
shop on Realizing AI Synergies in Software Engineering, IEEE Press, 2012,
pp- 52-56.

M. Harman, The role of artificial intelligence in software engineering, in:
Proceedings of the First International Workshop on Realizing AT Synergies
in Software Engineering, IEEE Press, 2012, pp. 1-6.

L. Williams, What agile teams think of agile principles, Communications
of the ACM 55 (4) (2012) 71-76.

Scrum alliance, accessed 15 June 2016.
URL http://www.scrumalliance.org

K. Schwaber, M. Beedle, Agile Software Development with Scrum, Prentice
Hall, 2002.

K. Beck, C. Andres, Extreme programming explained: embrace change,
2nd Edition, Addison-Wesley, 2005.

13

http://www.scrumalliance.org
http://www.scrumalliance.org

[44] A. Cockburn, Agile software development, Pearson Education, 2002.

[45] Atlassian JIRA| accessed 15 June 2016.
URL https://www.atlassian.com/software/jira

[46] E. Coelho, A. Basu, Effort estimation in agile software development using
story points, International Journal of Applied Information Systems (IJAIS)
3 (7).

[47] 1. M. Del Aguila, J. Del Sagrado, Three steps multiobjective decision pro-
cess for software release planning, Complexity.

[48] J. del Sagrado, I. M. del Aguila, F. J. Orellana, Multi-objective ant colony
optimization for requirements selection, Empirical Software Engineering
20 (3) (2015) 577-610.

[49] A. M. Pitangueira, P. Tonella, A. Susi, R. S. Maciel, M. Barros, Risk-aware
multi-stakeholder next release planning using multi-objective optimization,
in: International Working Conference on Requirements Engineering: Foun-
dation for Software Quality, Springer, 2016, pp. 3-18.

[50] M. B. Chrissis, M. Konrad, S. Shrum, CMMI guidlines for process integra-
tion and product improvement, Addison-Wesley Longman Publishing Co.,
Inc., 2003.

[61] ISO IEC 15504-5:2012, information technology — process assessment — part
5: An exemplar software life cycle process assessment model, accessed 16
June 2016.

URL http://www.iso.org/iso/catalogue_detail.htm?csnumber=
60555

[62] S. Lane, I. Richardson, Process models for service-based applications: A
systematic literature review, Information and Software Technology 53 (5)
(2011) 424-439.

[63] M. E. Nordberg III, Managing code ownership, IEEE Software 20 (2) (2003)
26-33.

[64] L. M. Maruping, X. Zhang, V. Venkatesh, Role of collective ownership
and coding standards in coordinating expertise in software project teams,
European Journal of Information Systems 18 (4) (2009) 355-371.

[65] J. L. Wilkerson, D. R. Tauritz, J. M. Bridges, Multi-objective coevolu-
tionary automated software correction, in: Proceedings of the 14th annual
conference on Genetic and Evolutionary Computation, ACM, 2012, pp.
1229-1236.

[56] B. R. Bruce, J. Petke, M. Harman, Reducing energy consumption using
genetic improvement, in: Proceedings of the 2015 on Genetic and Evolu-
tionary Computation Conference, ACM, 2015, pp. 1327-1334.

14

https://www.atlassian.com/software/jira
https://www.atlassian.com/software/jira
http://www.iso.org/iso/catalogue_detail.htm?csnumber=60555
http://www.iso.org/iso/catalogue_detail.htm?csnumber=60555
http://www.iso.org/iso/catalogue_detail.htm?csnumber=60555
http://www.iso.org/iso/catalogue_detail.htm?csnumber=60555

[57]

[58]

[59]

[60]

[61]

[63]

D. R. White, J. Singer, Rethinking genetic improvement programming, in:
Proceedings of the Companion Publication of the 2015 on Genetic and
Evolutionary Computation Conference, ACM, 2015, pp. 845-846.

W. G. Griswold, W. F. Opdyke, The birth of refactoring: A retrospective
on the nature of high-impact software engineering research, Software, IEEE
32 (6) (2015) 30-38.

M. Fowler, Refactoring: improving the design of existing code, Addison-
Wesley, 1999.

M. Hafiz, J. Overbey, Refactoring myths, IEEE Software 32 (6) (2015)
39-43.

B. Amal, M. Kessentini, S. Bechikh, J. Dea, L. B. Said, On the use of ma-
chine learning and search-based software engineering for ill-defined fitness
function: a case study on software refactoring, in: Search-Based Software
Engineering, Springer, 2014, pp. 31-45.

C. Simons, J. Smith, Exploiting antipheromone in ant colony optimisation
for interactive search-based software design and refactoring, in: Proceed-
ings of Conference Companion of Genetic and Evolutionary Computation
Conference, ACM, 2016.

W. B. Langdon, Evo_indent interactive evolution of gnu indent options., in:
Proceedings of the Conference Companion of the Genetic and Evolutionary
Computing Conference, 2009, pp. 2081-2084.

M. Harman, Automated test data generation using search based software
engineering, in: Automation of Software Test, 2007. AST’07. Second Inter-
national Workshop on, IEEE, 2007, pp. 2-2.

G. Fraser, M. Staats, P. McMinn, A. Arcuri, F. Padberg, Does automated
unit test generation really help software testers? a controlled empiri-
cal study, ACM Transactions on Software Engineering and Methodology
(TOSEM) 24 (4) (2015) 23.

15

	Introduction
	Some Ideas Out There - Possible Fallacies?
	Some Facts, or What We Do Know
	Search in (Agile) Practice
	Iteration (Sprint) Planning
	Retrospective
	Collective Code Ownership
	Continuous Integration
	Pair Programming
	Refactoring
	Test-First Programming

	Concluding Reflections

